37 research outputs found

    Reliability and Cost Model of P.M. in A Component of an Electrical Distribution System Considering Ageing Mechanism

    Get PDF
    Application of Reliability Centered Maintenance (RCM) in a system results in a decrease in component failure rates and as such improvement in the system reliability. One of the major subjects of the RCM is focused on the Online and Offline Preventive Maintenance (OPM and FPM which together will be denoted by OFPM) of the components which repairing the component needs or doesn’t need to stop the mission carrying out by it. The RCM is classified as a preventive maintenance policy and has significant contribution in practical applications. However, little research has been devoted to modeling the online and offline Preventive Maintenance. This research assumes that the component failure rate will be improved if the OFPM is performed for a long period of time as a part of an RCM program. Application of an OFPM program could cause the component set at least to “as bad as old state but cannot reach the “as good as new” state. The emphasis of this research is to model the OFPM for critical components or any equipment with critical failure in a system. The proposed model is based on the concept of PM and improvement factor of reliability in a system with critical components which their failure could cause a failure in the system (first-order cut- sets).DOI:http://dx.doi.org/10.11591/ijece.v4i2.551

    Customer choice of reliability in spinning reserve procurement and cost allocation using well-being analysis,” Elect

    Get PDF
    a b s t r a c t A novel pool-based market-clearing algorithm for spinning reserve (SR) procurement and the cost allocation associated with provision of spinning reserve among customers (DisCos) is developed in this paper. Rational buyer market model is used to clear energy and spinning reserve markets in the proposed algorithm. This market model gives DisCos the opportunity to declare their own energy requirement together with their desired reliability levels to the ISO and also they can participate in the SR market as a interruptible load. The DisCos' desired reliability levels are selected from a hybrid deterministic/probabilistic framework designated as the system well-being model. Using the demand of each DisCo and its associated desired reliability level, the overall desired system reliability level is determined. The market operator then purchases spinning reserve commodity from the associated market such that the overall desired system reliability level is satisfied. A methodology is developed in this paper to fairly allocate the cost associated with providing spinning reserve among DisCos based on their demands and desired reliability levels. An algorithm is also presented in this paper for implementing the proposed approach. The effectiveness of the proposed technique is examined using the IEEE-RTS

    Editorial: Climate change mitigation and adaptation in power and energy systems

    Get PDF
    \ua9 2024. This editorial summarizes the papers selected for publication in the Special Issue on Climate Change Mitigation and Adaptation in Power and Energy Systems (CMAP). After a rigorous review of 86 submitted manuscripts, 23 papers were accepted for publication. These accepted papers cover various aspects of climate change mitigation and adaptation and are classified as follows: boosting renewable energy efficiency (two papers), climate resilience strategies (four papers), decarbonization strategies (four papers), renewable energy integration (five papers), policies, incentives, and science communications (four papers), and the role of energy markets (four papers). The Guest Editorial Board is optimistic that this Special Issue will serve as a rich resource, offering invaluable insights to propel future research and advancements in climate change mitigation and adaptation

    Large-scale unit commitment under uncertainty: an updated literature survey

    Get PDF
    The Unit Commitment problem in energy management aims at finding the optimal production schedule of a set of generation units, while meeting various system-wide constraints. It has always been a large-scale, non-convex, difficult problem, especially in view of the fact that, due to operational requirements, it has to be solved in an unreasonably small time for its size. Recently, growing renewable energy shares have strongly increased the level of uncertainty in the system, making the (ideal) Unit Commitment model a large-scale, non-convex and uncertain (stochastic, robust, chance-constrained) program. We provide a survey of the literature on methods for the Uncertain Unit Commitment problem, in all its variants. We start with a review of the main contributions on solution methods for the deterministic versions of the problem, focussing on those based on mathematical programming techniques that are more relevant for the uncertain versions of the problem. We then present and categorize the approaches to the latter, while providing entry points to the relevant literature on optimization under uncertainty. This is an updated version of the paper "Large-scale Unit Commitment under uncertainty: a literature survey" that appeared in 4OR 13(2), 115--171 (2015); this version has over 170 more citations, most of which appeared in the last three years, proving how fast the literature on uncertain Unit Commitment evolves, and therefore the interest in this subject

    Reliability-Constrained Unit Commitment Considering Interruptible Load Participation

    No full text
    From the optimization point of view, an optimum solution of the unit commitment problem with reliability constraints can be achieved when all constraints are simultaneously satisfied rather than sequentially or separately satisfying them. Therefore, the reliability constraints need to be appropriately formulated in terms of the conventional unit commitment variables. In this paper, the reliability-constrained unit commitment problem is formulated in a mixed-integer program format. Both the unit commitment risk and the response risk are taken into account as the probabilistic criteria of the operating reserve requirement. In addition to spinning reserve of generating units, interruptible load is also included as a part of operating reserve. The numerical studies using IEEE-RTS indicate the effectiveness of the proposed formulation. The obtained results are presented and the implementation issues are discussed. Two sensitivity analyses are also fulfilled to illustrate the effects of generating unit failure rates and interruption time of interruptible load

    UPFC for Enhancing Power System Reliability

    No full text
    International audienc
    corecore